Ethylene decomposition at undercoordinated sites on Cu(410).

نویسندگان

  • Tatyana Kravchuk
  • Luca Vattuone
  • Luke Burkholder
  • Wilfred T Tysoe
  • Mario Rocca
چکیده

We demonstrate the selective, low-temperature chemistry of ethylene on the strongly undercoordinated sites of Cu(410) by investigating its adsorption by high-resolution electron energy loss spectroscopy (HREELS), X-ray photoelectron spectroscopy (XPS), and temperature-programmed desorption (TPD). After dosing ethylene at approximately 110 K, apart from the expected pi-bonded species adsorbed on terraces, di-sigma-bonded ethylene and carbon are formed at the step edges. The latter product results from the complete dehydrogenation of ethylene and blocks sites for further dissociation and/or di-sigma-adsorption. However, these processes can be restored merely by heating the sample to 900 K, by causing the carbon to diffuse into the bulk. The presented results support the relevance of copper-based catalysts for the steam reforming process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of step geometry in copper oxidation by hyperthermal O2 molecular beam: Cu(511) vs Cu(410).

Steps are known to be often the active sites for the dissociation of O(2) molecules and the nucleation sites of oxide films since they provide paths for subsurface migration and oxygen incorporation. In order to unravel the effect of their morphology on the oxidation of Cu surfaces, we present here a detailed investigation of the O(2) interaction with Cu(511) and compare it with previous result...

متن کامل

Catalytic Decomposition of Methane and Ethylene into the Carbon and Hydrogen

The role of nickel as catalyst on the conversion of methane and ethylene in a gas phase flow reactor in the absence of oxygen is studied. In this study, nickel in its different forms is used as catalyst. The role of pressure, flow rate, and temperature on the conversion of feed gases is investigated. The experiments have been carried out in the presence and absence of the catalysts to measure t...

متن کامل

Overpotential for CO2 electroreduction lowered on strained penta-twinned Cu nanowires† †Electronic supplementary information (ESI) available: Details of DFT and MD calculations, CHE model and reaction pathways for C2H4 production. See DOI: 10.1039/c5sc02667a Click here for additional data file.

Based on first-principles calculations, we predict that penta-twinned Cu nanowires (NWs) are superior to conventional Cu catalysts for CO2 electroreduction. The penta-twinned NWs possess a combination of ultrahigh mechanical strength, large surface-to-volume ratios and an abundance of undercoordinated adsorption sites, all desirable for CO2 electroreduction. In particular, we show that the pent...

متن کامل

Influence of Surface Heterogeneities on Complexation of Ethylene with Active Sites of NiMCM-41 Nanocatalyst: A Density Functional Theory Study

Consecutive adsorption of ethylene molecules on different nanoclusters as representatives of the active sites of NiMCM-41 catalyst was investigated with respect to structural, topological, and energetic properties at the B3LYP/6-311+G* and M06/Def2-TZVP levels of theory. The dimeric adsorption of the ethylene molecules was found to be exothermic on all sites (adsorption enthalpies ranging from ...

متن کامل

Ethylene Conversion to Higher Hydrocarbon over Copper Loaded BZSM- 5 in The Presence of Oxygen

The successful production of higher hydrocarbons from methane depends on the stability or the oxidation rate of the intermediate products. The performance of the BZSM-5 and modified BZSM-5 catalyst were tested for ethylene conversion into higher hydrocarbons. The catalytic experiments were carried out in a fixed-bed micro reactor at atmospheric pressure. The catalysts were characterized using X...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 130 38  شماره 

صفحات  -

تاریخ انتشار 2008